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1.      Introduction. 

The results presented here were motivated by a desire to give a simple 

treatment of the non-linear elliptic partial differential equation governing 

the steady irrotational subsonic flow of an ideal compressible fluid.    For 

two independent space variables x and y,  the stream function  S' of such a 

flow satisfies an equation 

(i) ^tF'(H^^>4i] + ^t*'CH**H'y>%}-o      % 

where F-FCT~
+
 Y ) is an analytic, increasing, convex function cf x /     * 

2        2 1/2 
q. (ip   • y  )        whose explicit form depends on the equation of state of the 

fluid in question.    Our analysis of (l) will be based on the fact that it is 

the Euler-Lagrange equation for the double integral variational problem 

(2) j j  F(f£+ 4^)dxdy   -minimum. 

We shall introduce several devices for analyzing (2) which prove to be 

• 2   2x1/2 
particularly successful for the case F- (1 + vr_* T '   of the pla"teau problem. 

Shiffman [51 has given a proof of the existence of subsonic compressible 

flowa based on (2). His work is part of an extensive literature en the calculus 

of variations and on non-linear elliptic partial differential equations of which 

the contributions by Haar [2] and Rado [£] come closest to the point of view 

of our paper. The deduction of a priori estimates on the derivatives of the 

solution 4* of (2) and the discussion of the analyticity of ty are key develop- 

ments in the theory, and it is in these two directions that our analysis applies. 
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In the second section of the paper, we study the minimum problem (2) by 

the method of interior variation [1],    This leads in a natural way to an integral 

H for which we can derive a second order partial differential equation from the 

existence of the first derivatives of 4\    In the case of the Plateau problem, 

H satisfies an elliptic Monge-Arapere equation which ties in with Rad6's proof 

of the analyticity of a minimal surface. 

As a preparation for the application of interior variations, we take up 

in the third section a construction based on symmetrization which yields for 

the Plateau problem a minimal sequence satisfying a uniform Lipschitz condition. 

For this construction, our assumption on the boundary data is more general than 

that usually required for the analogous conclusion using the three-point 

condition, and we are therefore able to discuss the Plateau problem in non- 

parametric form for a domain which need not be convex.    Furthermore, the 

symmetrization method applies equally well for any finite number of indepen- 

dent variables. 

2.     interior variation and the Integral H. 

In a plane domain D with boundary curves C,  let sf be a solution of the 

minimum problem (2), with, for example,  prescribed boundary valued on the 

curves C.    ffe shall assume merely that ^   satisfies a Lipschitz condition in D, 

so that the first derivatives *f    and  4*   exist almost everywhere and are 

bounded.    Instead of trying to derive the Euler-Lagrange equation (l) by the 

classical method of varying T, we study (2)  in this section by performing 

infinitesimal transformations on the independent variables x and y and by 

considering the shift of 41  thus generated. 

We let f be a continuous  complex-valued function in D, with piece-wise 

continuous first derivatives, which vanishes on C.    It is convenient to use the 
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complex notation 2f-f -if , 2f_-*" -Hf.., z-x+iy, for derivatives. For 
z  *  7   z     *  «' 

snail values of the complex parameter 6, the transformation 

(3) z* - z + Cf  ,  z* - x*+ iy*   , 

performs a one-to-one mapping of B onto itself. We define a new function 4* 

in D by tb.9 formula 

U) tV,y*) - vKx,y)   , 

and we compare the values of the integral in (2) associated with the two 

neighboring functions  ""P and   4^ . 

Clearly 

(5) f fFUfl yj)dx* fly* -ffr(4Cf « .•*-I.3tH'a i-**- I*l>?i£'#*cdy 
JJ ZZ J^ ZZZZ Zz zz C7\X,7/ 

whence by elementary calculation 

(6) J f P(4vf* 4i*)dx*dy#- J[FU^2 ^Jdriy 

^jjUF-qV)^-^'^2 f-Tdxdy I + 0(|el2)     , 

I 
i 

-2 Re 

where q2-4<V 4i    and where F and F' stand for F(q2) and F'(q2).    In the 
z    z 

usual fashion, we conclude from (6),  from the extremal property (2) of  <T, 

and from the arbitrary nature of €   that 

(7) f fUF-qV)^-*?'^ f.ldxdy -   0 JJ" 
for every continuous piece-wise continuously differontiable function f in D 

which vanishes on C. 

LetO  be a closed subdomain of D,  let co be a continuously differentiate 

% function in D which is identically 1 in Cl and which vanishes on C,  let t be an 

interior point of O., and let p >0 be so small  that the circle   jz-t|^ p   is 

contained in the interior of O.    We define 
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(3) f - *3* 
r 

for  Iz-ti -^ O and we define 

: »> "A 
i 

in D for   |z-t| ^ p.    We can substitute this function f into  (?) to obtain 

(10) -^   ffF'^dxd7--i
>J 7^dxdy*A(t)        , 

• 

where K denotes the circle |z-t|^ p and where A(t) is the analytic function 

| (11) Lit)  - If (F- qV)[^ - -^33dxd7 
D-0 (z_t) 

inO. 
i 

Letting p->0, we find almost everywhere in O 

(12) ATTF^-.rr^-a^^dy* A(t) 

where the integral on the right is to be interpreted in the sense of the Cauchy 

principal value.  In the case of the Dirichlet problem, F=Eq and the formula 

(12) shows immediately that 4* is an analytic function. Thus we obtain in 

the simplest situation, corresponding to an incompressible fluid, a quite 

elegant proof that the solution of the minimum problem (2) is a regular function, 

I 
In order to study the general non-linear problem, we introduce the integral I 

(13) H - - ^r [J(F- qV) log |z-t| dxdy* B 

i A 

where B is a real harmonic function in O. 3uch that TTB^.t--A(t).    By (12) 
• 

. 

and by standard lemmas on the second derivatives of a logarithmic potential, 

we find almost everywhere in O. 

;  . (u) •«-'-^' 

(15)        "tt " -^'^   ,   H_--4K'^ 
1       tt      t 
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This give3 in turn 

(16) H++H  - H
2 «2q2FF'-F2 

tt tt  « 

1 

We can eliminate q from the equations  (H) and (16) to obtain for the real 

function H a partial differential equation of the form 

(17) &H - QO^- fi^)       ,      AH-H^+H^ , 

where Q is a real analytic function of its real argument which is completely 

determined by F.    For the most general function F corresponding to an arbitrary 

equation of state,   (17) is a non-linear equation equivalent to (l) which 

involves only very special combinations of second derivatives of the auxiliary 

function H.    The significance of this second ordar partial differential equation 

i3 that its derivation requires only a Lipschitz condition on the stream 

function  4*. 

The form of (17) suggests finding those integrands F for which it reduces 

to the Monge-Ampere equation 

(18) AH-H^yy-H^ 

This reduction takes place, according to (H.) and (l6), when F satisfies the 

ordinary differential equation 

(19) 2q2FF,-F2 - 2A(qV-F)    , 

for a suitable value of th9 constant A . We check immediately that (19) has 

the general solution         

| (20) F - A • ^A2+ ^q2' 

whence the Monge-Ampere equation (18) is seen to correspond to the case in 

which (2)  is the Plateau problem. 

We arrive in this way at a proof of the analyticity of a minimal surface. 

For we can apply the Legendre transformation 
: 
I 

:• 
i 
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1 
(21) h*H-ux+vy  ,  u - H^  ,  v-H_ 

% to (18) in order to obtain the linear elliptic quation 

i'he aoiution h of (22) is evidently an analytic function of u and v, whence H 

is an analytic function of x and y, and by (H.) and (15) we can conclude that 

the function *¥ is also analytic in x and y. The Poisson equation (22) yields, 

furthermore, a procedure for constructing flow patterns explicitly according to 

the formulas of this section in the case where the equation of state of the 

fluid lead3 to an integrand of the type (20). 

3.  Svmmetrlzatlon and the Lipschitz condition. 

The analysis of the preceding section exploited formal manipulations in 

order to demonstrate, in certain important special cases, the analyticity of 

solutions of (2). In this section, we complete our discussion of the Plateau 

problem by constructing a minimal sequence which fulfills a uniform Lipschitz 

condition. 

Along the curves C bounding the domain D, we assign boundary values which 

generate in space a system of smooth closed curves P. The problem is to span 

through the curves I  a non-parametric minimal surface over the domain D. Por 

this problem of the type (2), we can clearly find a minimal sequence of surfaces 

whose area3 approach the minimum value in question. There is no loss of 

generality if we assume that each of these surfaced lies in the convex hull 

of the system of curves P, since when this is not true for a given surface, 

we can diminish the area of the surface by replacing portions of it by sections 

of planes tangent to the convex hull of P. Furthermore, it is permissible to 

diminish the area of any of the surfaces of the minimal sequence in a similar 

manner by replacing portions of them by simply-connected sections of catenoids, 

* 
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or of other specific known minimal surfaces, which do not intersect P. 

Thus we ma7 suppose that all menbers of our minimal sequence lie in the 

largest closed region E projecting onto D which contains the curves P, but 

which does not intersect in a simply-connected surface element any plane or 

i 

catenoid not meeting I . This latter condition means that E cannot be 

diminished infinite3imally by cutting off a volume element with a plane or 

catenoid which does not intersect P. 

We now make the assumption on the boundary curves P that the closed 

set E is so situated that, for some 6^0, all lines making an angl« smeller 

than 9 with the normal to the plane domain D and intersecting <  have only 

one point in common with E. This assumption restricts the curvature of P, 

but does not imply that D is a convex domain, since in some cases D can even 

be multiply-connected. 

We consider any rectangular coordinate system in which the z-axis makes 

an angle les3 than © with the normal to the plane of D. In this coordinate 

system, any element of our minimal sequence has a non-parametric representation 

z-z(x,y) which may be multiple-valued, with branches z • z. (x,y),z - z2(x,y),..., 

z • z» +-,(x,y), z. ^.z^^^ .. .^z- +_. We symmetrize such a surface by 

replacing it nith the surface whose non-parametric representation is the 

single-valued expression 
2m+l 

(23) z - JZ  (-l)k+1 *v(x,y> 
k-1       * 

It follows from the basic results of Steiner, or, more directly,  from 

Minkowski's  inequality [3],  that the syrametrization process  (23) diminishes 

or leaves unchanged the area of the surface.    Furthermore,  if symmetrization 

in one such coordinate system is followed by symraetrization in another,  the 

resulting surface still has a single-valued non-parametric representation in 



the first coordinate system.    This can be checked by making an affine transfor- 

mation such that the directions of the two synmetrizations become perpendicular, 

a case in which the result is evident.    Finally, and most important of all, the 

symnetr5 nation procedure  (23) does not alter the boundary curves  P of any of 

our surfaces,  since the surfaces lie in the set E, which has the property that 

if any line parallel to one of our z-axes intersects  P,  then it intersects P 

and E in only one single point. 

These considerations show that we can assume without loss of generality 

that each surface of our minimal sequence has a single-valued non-parametric 

representation in every coordinate system whose z-axis is  inclined at an angle 

less than Q with the normal to the plane of D.    But if we denote by z - ^(x,y) 

the representation of such a surface in a coordinate system such that D lies 

in the  (x,y)-plane,  then this result implies that   4* satisfies the Lipschitz 

condition 

(24) |Wx2,y2)- YU^JI* M[(x2-x1)
2* (y2-yi)

2]l/?'        , 

with U«cot 0.    Thus we obtain a minimal sequence of surfaces satisfying 

the Lipschitz condition (24.),  ind from the lower semi-continuity of the 

area integral [2] we can deduce the existence of a solution of  (2) satisfying 

2 l/2 the same Lipschitz condition,  for P» (l + q ) 

A combination of the techniques of this section and of the previous 

section yields a solution of the Plateau problem in non-parametric form for 

a domain D which is not necessarily convex, but for a system of smooth boundary 

curves I     satisfying the above geometrical condition relative  to certain 

planes,  catenoids,  «nd projections.    Our method for developing such a condition 
* 

is a generalization to non-linear elliptic equations of the majorization 

principles of the theory of linear elliptic partial differential equations 

based on the maximum principle. 
( 
I 
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A point of interest in the symmetrizetion construction presented in 

•» thir section is that it yields estimates of precisely the same nature in space 
* 

of any number of dimensions.    In particular, we can treat the variational 

problem 
1/2 

(25) IjI^1+V^x+^*Vf«)      ^^7dB - minittum, 

which has applications to the study of three-dimensional flow of a 

Karman-Tsien gas. 

I 
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